ROTAMERIC BEHAVIOUR OF METHOXY GROUPS IN SOME ALDOPYRANOSES

A.De Bruyn ${ }^{a}$, M.Anteunis ${ }^{a}$ and P.Kováćc ${ }^{b}$

${ }^{a}$ State University of Gent, Department of Organic Chemistry, Laboratory for NMR spectroscopy, 9000 Gent, Belgium and
${ }^{b}$ Slovak Academy of Sciences,
Institute of Chemistry, 80933 Bratislava

Received February 28th, 1977

Through the determination of the chemical shift increments for the ring protons in pyranoses at the geminal and vicinal positions of a methoxy grouping it is possible to obtain qualitative insight about the rotameric states of the latter. This is exemplified on methyl α - and - β-D-glucopyranoside, 2-O-methyl- α - and - β-D-glucopyranose, 3-O-methyl- β-D-gulopyranose, 4-O-methyl- α - and $\beta-\mathrm{L}$-arabinopyranose and methyl 2-O-methyl- α - and - β-D-glucopyranoside. It is stated that an $\mathrm{H}-5$ axial proton is much less deshielded by an axial methoxy group at the anomeric position than by the hydroxyl function. A small shielding for protons involved in $\mathrm{H}\left(g^{+}, g^{-}, g^{-}\right) \mathrm{CH}_{3}$ or $\mathrm{H}\left(g^{-}, g^{+}\right.$, a) CH_{3} conformational fragments (δ-effect) seems to occur.

Partially methylated sugars have been investigated both by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectroscopy ${ }^{1-9}$. The rotameric preferences around the $\mathrm{C}-\mathrm{O}\left(\mathrm{CH}_{3}\right)$ bond were disclosed using the chemical shifts of the methoxyl groups. If an equatorial OMe moiety is flanked by two equatorial neighbours, $\left(\mathrm{OCH}_{3}\right.$ or OH$)$ the preferred conformations would be as depicted under I and $I I$, and if one of the adjacent groups is axial the

I

II

III
preferred rotamer would be $I I I$ (ref. ${ }^{1,7-9}$). Also, a relation between ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ --methoxy shifts has been proposed ${ }^{7,8}$. Chemical shifts for the ring protons of permethylated pyranoses have been reported ${ }^{8}$ without interpreting these in light of possible rotameric distribution of the methoxy substituents. Rathbone ${ }^{3,4}$ has studied the
changes of ring proton chemical shifts with the position of methylation in partially methylated D-galactosides.
We apply now the earlier proposed ${ }^{10}$ increment values, as caused by methoxy groups on protons in geminal and vicinal position on some partially methylated pyranoses (Scheme 1; methyl α - and β-D-glucopyranoside, 2-O-methyl- α - and - β-D-glucopyranose, methyl 2-O-methyl- α - and - β-D-glucopyranoside, 4-O-methyl- α - and $-\beta-\mathrm{L}$-arabino pyranose and 3-O-methyl- β-d-gulopyranose).

D-glucopyranose
derivatives

4-O-CH ${ }_{3}$-L-arabinopyranose (${ }^{1} C_{4}$-form)

(3-1)-xylopyranose

3-O-CH CH_{3}-1)-gulopyranose.

Schemi: 1

The results show that it is easy to interpret qualitatively the observed influences in light of the conformational behaviour of methoxy groups around the $\mathrm{C}-\mathrm{O}\left(\mathrm{CH}_{3}\right)$ bond, but that these preferred rotameric states differ sometimes somewhat from the earlier findings from the studies of the methoxy shifts ${ }^{19}$.

EXPERIMENTAL

The synthesis of methy1 2-O-methyl- α - and - β-D-glucopyranoside have been described ${ }^{11}$ as well as the synthesis of 4-O-methyl-L-arabinopyranose ${ }^{12}$. The synthesis of 2-O-methyl-d-glucose was described ${ }^{13}$. 3-O-Methyl- α, β-D-gulopyranose was a commercial product (SEFOCHEM, Israel). It consists of a mixture of α-, and β-anomers, in which the amount of the α-isomer was too low to permit the extraction of precise data. Spectra were taken in $\mathrm{D}_{2} \mathrm{O}$ with trimethylsilylpentane-
sulfonic acid (TSP) as the internal reference on a VARIAN HR 300 MHz , equipped with homo INDOR facilities (SC 8525-2 decoupler). Simulations of some of the higher order spin system patterns were performed by SIM EQ 16/II programme.

RESULTS AND DISCUSSION

β - and γ-Increment values: It is known that a methyl ${ }^{14}$ or hydroxyl ${ }^{15}$ substituent causes an upfield displacement of a synclinal ring proton $(-0.2 /-0.3 \mathrm{ppm}$ for a syn--cis and $-0 \cdot 0_{4} \mathrm{ppm}$ for a syn-trans methyl ${ }^{14}$) but a downfield shift of an antiperiplanar ring proton (+0.3 ppm for methyl). The largest upfield effect in syn-cis relations are met when eclipse occurs. For a longer chain substituent the shift effects on geminal protons are consistent ${ }^{10}$ with cumulative α-, β - and γ-effects, whereby not only the first, but also the subsequent β - and γ-atoms of that side chain must be considered. Therefore these shift contributions depend on the rotational state of the side chain, e.g. of a methoxy group. In 1,3-dioxanes, these effects were found ${ }^{16,17}$ to be rather sensitive to the substitution pattern, e.g. -0.12 to -0.43 ppm for syn-cis, $+0.0_{2}$ to -0.14 ppm for syn-anti and +0.15 to +0.18 ppm for antiperiplanar dispositions. We have collected in Table I the known γ-effects (or 1,3-effects) of a

Table I
Chemical Shift Increments (in ppm^{a}) Caused by a Methyl-Group in Methyl-Cyclohexane (A), 2-Methyl-substituted 1,3-Dioxanes (B) and 4-Methyl-substituted 1,3-Dioxanes (C)

1,3 Effect	A (ref. ${ }^{15}$)	B (ref. ${ }^{17}$)	B (ref. ${ }^{16}$)	C (ref. ${ }^{17}$)	C (ref. ${ }^{16}$)
$\begin{aligned} & \mathrm{H}\left(g^{-}, a\right) \mathrm{CH}_{3} \\ & \mathrm{H}\left(g^{+}, a\right) \mathrm{CH}_{3} \end{aligned}$	$+0.07$	+0.01	$+0.05$	+0.03	0
$\begin{aligned} & \mathrm{H}\left(a, g^{-}\right) \mathrm{CH}_{3} \\ & \mathrm{H}\left(a, g^{+}, \mathrm{CH}_{3}\right. \end{aligned}$	-0.26	-0.16	-	-0.22	-0.25
$\mathrm{H}(a, a) \mathrm{CH}_{3}$	-0.03	-0.03	$+0.03$	-0.02	$+0.03$
$\begin{aligned} & \mathrm{H}\left(g^{+}, g^{+}\right) \mathrm{CH}_{3} \\ & \mathrm{H}\left(g^{-}, g^{-}\right) \mathrm{CH}_{3} \end{aligned}$	--	$-0.13 /-0.30^{b}$	-	-	-
$\begin{aligned} & \mathrm{H}\left(g^{+}, g^{-}\right) \mathrm{CH}_{3} \\ & \mathrm{H}\left(g^{-}, g^{+}\right) \mathrm{CH}_{3} \end{aligned}$	$+0.25$	$+0.20$	+ 0.25	$+0.17$	$+0.39$

[^0]Table II
Chemical Shifts ${ }^{a}$ of Methyl α - and - β-D-Glucopyranosides, 2-O-Methyl- α - and- β-D-Glucepyranoses and Methyl 2-O-Methyl- α - and - β-Glucopyranosides (in $\mathrm{D}_{2} \mathrm{O}$ os TSP)
β-D-Glucopyranose
Methyl β-D-glucopyranoside
2-O-Methyl- β-D-glucopyranose
2-O-Methyl- α-D-glucopyranose
 pyranoside
Methyl 2-O-methyl- α-D-glucopyranoside

[^1]methyl group, wherefore the observed effects in 2- or 4-methyl-substituted 1,3-dioxanes (B) and (C) are perhaps the best values suited for the present purpose (Table I). We have gathered in Tables II $-V$ the ${ }^{1} \mathrm{H}$-NMR parameters of the pyranoses relevant to the present discussion, obtained at 300 MHz .
$\mathrm{C}-\mathrm{OCH}_{3}$ Rotamers in 2-O-methyl- β-D-glucopyranose: Compared to β-d-glucopyranose itself, the following increments (in ppm) are found after methylation $0.0(\mathrm{H}-1),-0.27(\mathrm{H}-2)$ and $+0.11(\mathrm{H}-3)$. The three rotameric states for $2-\mathrm{OCH}_{3}$ are displayed in (IVA - IVC) together with the relative configuration of the fragments under consideration. The upfield shift of $\mathrm{H}-2$ and the downfield shift on $\mathrm{H}-3$ exclude

IIA $\mathrm{H}-2\left(\right.$ (upp) CH_{3} $\mathrm{H}-\mathrm{I}\left(g^{1} g^{-}\right) \mathrm{CH}_{3}$ $\mathrm{H}-3\left(g^{-} g^{-}\right) \mathrm{CH}_{3}$

ILB $\mathrm{H}-2(\mathrm{sc}) \mathrm{CH}_{3}$ $\mathrm{H}-/\left(\varphi^{+}, u^{+}\right) \mathrm{CH}_{3}$ $\mathrm{H}-3\left(g^{\prime}\right.$ c $\left.u\right) \mathrm{CH}_{3}$

IV' $\mathrm{CH}-2(\mathrm{sc}) \mathrm{CH}_{3}$ $\mathrm{H}-/\left(g^{+} a\right) \mathrm{CH}_{3}$ $\mathrm{H}-3\left(g^{-} y^{-}\right) \mathrm{CH}_{3}$
$I V A$. However for both IVB and IVC forms one would expect different increments than those observed. $\mathrm{H}-3$ in $I V B$ and $\mathrm{H}-1$ in $I V C$ are characterized by a $\mathrm{H}(g, a) \mathrm{CH}_{3}$

Table III
Coupling Constants in Hz

$$
\begin{array}{llllllll}
\text { Compound } & J(1,2) & J(2,3) & J(3,4) & J(4,5) & J(5,6 \mathrm{~A}) & J(5,6 \mathrm{~B}) & J(6 \mathrm{~A}, 6 \mathrm{~B})
\end{array}
$$

β-d-Glucopyranose	$7 \cdot 9$	$9 \cdot 1$	$9 \cdot 0$	$9 \cdot 8$	$2 \cdot 0$	$5 \cdot 8$	-12.0
α-D-Glucopyranose	3.7	$10 \cdot 0$	8.8	9.8	2.0	5.8	-12.0
Methyl β-D-glucopyranoside	$7 \cdot 8$	$9 \cdot 4$	8.8	10.0	$2 \cdot 1$	5.8	-12.3
Methyl α-d-glucopyranoside	$3 \cdot 8$	$10 \cdot 0$	8.8	$9 \cdot 8$	$2 \cdot 2$	$5 \cdot 4$	-12.3
2-O-Methyl- β-d-glucopyranose	7.9	$9 \cdot 2$	9.0	-	1.8	5.6	-12.2
2-O-Methyl- α-D-glucopyranose	3.6	$9 \cdot 8$	8.8	$9 \cdot 8$	$2 \cdot 2$	5.6	-12.4
Methyl 2-O-methyl- β-D-glucopyranoside	$7 \cdot 9$	$9 \cdot 2$	8.8	$9 \cdot 6$	$1 \cdot 8$	$5 \cdot 6$	-12.2
Methyl 2-O-methyl- α-D-glucopyranoside	3.6	$9 \cdot 8$	$9 \cdot 0$	$10 \cdot 0$	$2 \cdot 4$	$5 \cdot 4$	$-12 \cdot 3$

conformational arrangement (expected to result in a very small downfield effect) while $\mathrm{H}-1$ in $I V B$ and $\mathrm{H}-3$ in $I V C$ should suffer from an upfield effect $\left(g^{+}, g^{+}\right.$relation). Only an admixture of all three forms $I V A-I V C$ may well explain the experimental data, with $I V B$ being the preponderant rotamer. The presence of IVA as a minor component would explain the downfield shift on $\mathrm{H}-3$. From ${ }^{13} \mathrm{C}-\mathrm{NMR}$ studies it has been concluded ${ }^{18}$ that $I V B$ and IVC are the sole rotamers present.
$\mathrm{C}-\mathrm{OCH}_{3}$ Rotamers in 2-O-methyl- α-D-glucopyranose: The increments are $+0.27(\mathrm{H}-1),-0.24(\mathrm{H}-2)$ and $+0.02(\mathrm{H}-3)$. Out of the three rotamers $V A-V C, V A$ may immediately be discarded as an important contributor because the substantial

l. $\mathrm{H}-2(a p p) \mathrm{CH}_{3}$ $\mathrm{H}-\left(g^{-} g^{-}\right) \mathrm{CH}_{3}$ $\mathrm{H}-3\left(g^{+} y^{-}\right) \mathrm{CH}_{3}$

I B $\mathrm{H}-2(\mathrm{sc}) \mathrm{CH}_{3}$ $\mathrm{H}-\mathrm{I}\left(y^{-} y^{+}\right) \mathrm{CH}_{3}$ $\mathrm{H}-3\left(g^{-} a\right) \mathrm{CH}_{3}$

F $\mathrm{C}-2(\mathrm{sc}) \mathrm{CH}$ $\mathrm{H}-\mathrm{I}\left(\mathrm{g}^{-} \mathrm{a}\right) \mathrm{CH}_{3}$ $\mathrm{H}-3\left(g^{-1} g^{-}\right) \mathrm{CH}_{3}$
downfield effect for $\mathrm{H}-2$ would be unlikely. Also the effect on $\mathrm{H}-3$ would not be readily explained. Although considerations of the β-effects allow $V B$ and $V C$ to be good candidates, the latter is less probable because of an expected g, a effect to be almost zero on $\mathrm{H}-1$; and $\mathrm{H}-3$ would rather become shielded (g^{-}, g^{-}effect). The data agree well with the $V B$ rotamer as the sole species present. This has been corroborated by the previously mentioned ${ }^{13} \mathrm{C}$ - and methoxy ${ }^{1} \mathrm{H}-\mathrm{NMR}$ studies ${ }^{1-9}$.

$V / A \mathrm{H}-1($ app $) \mathrm{CH}_{3}$ $\mathrm{H}-2\left(g^{+} g^{-}\right) \mathrm{CH}_{3}$

$V I_{B} \mathrm{H}-/(\mathrm{sc}) \mathrm{CH}_{3}$
$\mathrm{H}-2\left(y^{+}() \mathrm{CH}_{3}\right.$

$\sqrt{V / \mathrm{C} \mathrm{H}-l(\mathrm{sc}) \mathrm{CH}_{3}} \underset{\mathrm{H}-2\left(g^{+} y^{+}\right) \mathrm{CH}_{3}}{ }$
$\mathrm{C}-\mathrm{OCH}_{3}$ Rotamers in methyl β-D-glucopyranoside: With β-D-glucopyranose as the model compound the observed shift-displacements are $-0.27(\mathrm{H}-1)$ and +0.01
(H-2). Along the same lines of reasoning two interpretations may be given. Either $V I B$ is the preponderant form, or an admixture with almost equal populations of VIA and VIC may be present. The latter possibility results from the fact that the effects on both $\mathrm{H}-1$ and $\mathrm{H}-2$ in VIA and VIC are opposite and may well cancel out each other. In view of the exo-anomeric effect ${ }^{19}$ however, rotamer VIB should be the rotamer of our choice.
$\mathrm{C}-\mathrm{OCH}_{3}$ Rotamers in methyl $\alpha-\mathrm{D}-\mathrm{glucopyranoside:} \mathrm{The} \mathrm{observed} \mathrm{increments}$ are $-0.43(\mathrm{H}-1)$ and $+0.06(\mathrm{H}-2)$, taking α-D-glucopyranose as the reference compound. Again VIIA is improbable (that would result in a downfield shift for $\mathrm{H}-1$ but

$V I_{A} \mathrm{H}-\mathrm{I}(\mathrm{app}) \mathrm{CH}_{3}$ $\mathrm{H}-2\left(a y y^{+}\right) \mathrm{CH}_{3}$

$\underset{*}{V I / B \mathrm{H}-l(\mathrm{sc}) \mathrm{CH}_{3}} \underset{\mathrm{H}-2(\mathrm{ar}) \mathrm{CH}_{3}}{ }$

J./IC $\mathrm{H}-1(\mathrm{sc}) \mathrm{CH}_{3}$ $\mathrm{H}-2\left(\mathrm{ag} \mathrm{g}^{-}\right) \mathrm{CH}_{3}$
an upfield shift for H-2), and VIIC also is less likely because $\mathrm{H}-2$ would suffer from an important downfield effect. In accordance with the presence of an exo-anomeric effect ${ }^{19}$ rotamer VIIB is found to be the major form.

4-O-Methyl- β-L-arabinopyranose: β-L-Arabinopyranose occurs in the inverted chair form ${ }^{20}$ with an axial $4-\mathrm{OH}$ group. The extracted ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data for the $4-\mathrm{OCH}_{3}$ derivative, together with those of pyranoses that we need for reference (α, β-L-arabinopyranose and β-D-xylopyranose) are collected in Table IV. The relevant increments found in the methylated arabinopyranoses with respect to the free pyranoses are; for the β-form: $+0.04(\mathrm{H}-3),-0.36(\mathrm{H}-4),+0.18(\mathrm{H}-5 \mathrm{eq}$.$) and -0.10(\mathrm{H}-5 \mathrm{ax})$. For the α-form they are very similar: $+0.04(\mathrm{H}-3),-0.35(\mathrm{H}-4),+0.20(\mathrm{H}-5 \mathrm{eq}$. and $-0.14(\mathrm{H}-5 \mathrm{ax})$. The three rotamers which may cause these shifts are shown in VIIIA - VIIIC. Because of the important upfield effect on H-4, rotamer VIIIA may be neglected, as expected $\left(\mathrm{OCH}_{3}\right.$ pointing over the ring), as is also the case for VIIIB, because it would be hard to explain the position of $\mathrm{H}-3, \mathrm{H}-5 \mathrm{eq}$. and $\mathrm{H}-5 \mathrm{ax}$ for which the effects should be reversed. Only VIIIC is in agreement with the observations.
Table IV
Chemical Shifts and Coupling Constants of $\alpha, \beta-\mathrm{L}-\mathrm{Arabinopyranose}$ and 4-O-Methyl- α, β-L-arabinopyranose in $\mathrm{D}_{2} \mathrm{O}$ (TSP)

Chemical shifts:	H-1	H-2	H-3	H-4	H-5eq	H-5ax
β-d-Xylopyranose ${ }^{a}$	$4 \cdot 57$	3.23	3.42	3.63	3.93	$3 \cdot 32$
α-L-Arabinopyranose ${ }^{\text {b }}$	$4 \cdot 52$	$3 \cdot 51$	$3 \cdot 66$	3.95	3.91	$3.67\|+0.35\|$
β-L-Arabinopyramose ${ }^{\text {b }}$	$5 \cdot 24$	$3 \cdot 82$	3.89	$4 \cdot 01$	$3 \cdot 66$	4.01
4-O-Methyl- α-L-arabinopyranose ${ }^{c}$	4.51(-0.01)	$3.45(-0.06)$	$3.70(+004)$	$3.60(-0.35)$	$4 \cdot 11(+0 \cdot 20)$	3.53(-0.14)
		$\|+0.22\|$	$1+0 \cdot 28 \mid$		$\|+0 \cdot 18\|$	$1+0.21 \mid$
4-O-Methyl- β-L-arabinopyranose	5.22(-0.02)	$3.76(-0.06)$	$3.93(+0.04)$	$3 \cdot 65(-0.36)$	$3 \cdot 84(+0 \cdot 18)$	$3.91(-0.10)$
Coupling constants:	$J(1,2)$	$J(2,3)$	$J(3,4)$	$J(4,5 \mathrm{e})$	$J(4,5 \mathrm{a})$	$J(5 \mathrm{e}, 5 \mathrm{a})$
β-d-Xylopyranose ${ }^{a}$	7.8	$9 \cdot 2$	$9 \cdot 0$	$5 \cdot 4$	10.5	-11.4
β-L-Arabinopyranose ${ }^{\text {b }}$	7.8	9.7	3.7	$2 \cdot 3$	1.0	-12.6
α-L-Arabinopyranose ${ }^{\text {b }}$	3.4	9.8	3.2	$2 \cdot 5$	$1 \cdot 6$	-12.6
4-O-Methyl- α-L-arabinopyranose	7.8	9.8	$3 \cdot 6$	$2 \cdot 0$	1.0	-13.4
4-O-Methyl- β-L-arabinopyranose	3.7	9.9	3.6	$2 \cdot 4$	1.4	-13.1

${ }^{a}$ From ref. ${ }^{26} .{ }^{b}$ From ref. ${ }^{20}$. ${ }^{c}$ Values between () are increments vs β-L-arabinopyranose, those between || vs β-d-xylopyranose.

VIIIA $\mathrm{H}-\mathrm{f}($ app $) \mathrm{CH}_{3}$ $\mathrm{H}-3\left(\mathrm{ag}^{+}\right) \mathrm{CH}_{3}$ $\mathrm{H}-\mathrm{j}_{\mathrm{ax}}\left(a g^{-}\right) \mathrm{CH}_{3}$ $\mathrm{H}-\mathrm{Seq}_{\mathrm{eq}}\left(g^{-} g^{-}\right) \mathrm{CH}_{3}$

$V I I I_{B} \mathrm{H}-4(\mathrm{sc}) \mathrm{CH}_{3}$
$\mathrm{H}-3\left(\mathrm{ac} \mathrm{g}^{-}\right) \mathrm{CH}_{3}$
$\mathrm{H}-\mathrm{S}_{\mathrm{yx}}(a a) \mathrm{CH}_{3}$
$\mathrm{H}-\mathrm{F}_{\mathrm{cq}} \mathrm{cq}_{4}\left(\mathrm{y}^{-} \mathrm{c}\right) \mathrm{CH}_{3}$

ITIC $\mathrm{H}-\mathrm{H}(\mathrm{sc}) \mathrm{CH}_{3}$
$\mathrm{H}-3(a a) \mathrm{CH}_{3}$
$\mathrm{H}-5_{\mathrm{5ax}}\left(a g^{+}\right) \mathrm{CH}_{3}$
$\mathrm{H}-\mathrm{S}_{\mathrm{cq}}\left(a g^{-}\right) \mathrm{CH}_{3}$

3-O-Methyl- β-D-gulopyranose: Table V gives the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data. The increments with respect to β-D-gulopyranose are $+0.02(\mathrm{H}-2),-0.40(\mathrm{H}-3)$ and $+0.21(\mathrm{H}-4)$.

$$
\begin{array}{ll}
I X \mathrm{H}^{\mathrm{H}-3(\mathrm{sc}) \mathrm{CH}_{3}} \\
& \mathrm{H}-2(a) \mathrm{CH}_{3} \\
\mathrm{H}-4\left(g^{+}+g^{-}\right) \mathrm{CH}_{3}
\end{array}
$$

Table V
$300 \mathrm{MHz}^{1} \mathrm{H}$-NMR Data of β-D-Gulopyranose and 3-O-Methyl- β-D-gulopyranose in $\mathrm{D}_{2} \mathrm{O}$

Chemical shifts:	H-1	H-2	H-3	H-4	H-5	H-6A	H-6B
β-D-Gulopyranose ${ }^{\text {a }}$	$4 \cdot 88$	$3 \cdot 63$	4.07	$3 \cdot 82$	$4 \cdot 00$	3.75	3.74
3-O-Methyl- β-D-gulopyranose	$4 \cdot 81$	$3 \cdot 65$	$3 \cdot 67$	4.03	3.92	$3 \cdot 74$	$3 \cdot 74$
Increment ${ }^{\text {b }}$	-0.07	$+0.02$	-0.40	$+0.21$	-0.08	-	-
Coupling constants:	$J(1,2)$	$J(2,3)$	$J(3,4)$	$J(4,5)$	$J(5,6 \mathrm{~A})$	$J(5,6 \mathrm{~B})$	$J(6 \mathrm{~A}, 6 \mathrm{~B})$
$\beta-\mathrm{D}-\mathrm{Gulopyranose}{ }^{\text {a }}$	$8 \cdot 4$	$3 \cdot 2$	$3 \cdot 8$	$1 \cdot 4$	6.6	$5 \cdot 8$	${ }^{-}$
3-O-Methyl-ß-D-gulopyranose	$8 \cdot 0$	$3 \cdot 5$	$3 \cdot 5$	$1 \cdot 2$	- ${ }^{\text {c }}$	- ${ }^{\text {c }}$	$-^{c}$

[^2]Table VI
Increments of the $\mathrm{C}-\mathrm{O}\left(\mathrm{CH}_{3}\right)$ Bond

Compound	OR-group	Observed proton	Effect
Methyl α-D-glucopyranoside	C-1	H-2	app
Methyl α-D-glucopyranoside	C-1	H-3	synax
4-O-Methyl- α-L-arabinopyranose	C-4	H-3	$a p p$
4-O-Methyl- α-L-arabinopyranose	C-4	H-2	synax

The rotamer $I X$ is therefore the preponderant form in agreement with what was expected taking the foregoing cases into consideration.

Cumulative effects: Methyl 2-O-methyl- α and β-D-glucopyranoside: When we confront the increments found in the methyl 2-O-methyl- α, β-D-glucopyranosides with those encountered in the corresponding methyl α, β-D-glucopyranosides and the $2-\mathrm{O}-\mathrm{CH}_{3}$-derivatives, it is found that the net increment-values are the sum-values (e.g. for the β-derivatives: experimental: $-0.23(\mathrm{H}-1),-0.25(\mathrm{H}-2)$ and $+0.09(\mathrm{H}-3)$; sum values: $-0.27(\mathrm{H}-1),-0.28(\mathrm{H}-2)$ and $+0.17(\mathrm{H}-3)$; and for the α-derivatives: experimental: $-0.18(\mathrm{H}-1),-0.21(\mathrm{H}-2)$ and $-0.02(\mathrm{H}-3)$; sum values: $-0.16(\mathrm{H}-1)$, $-0.18(\mathrm{H}-2)$ and $0.0(\mathrm{H}-3))$. We therefore conclude that the individual rotameric populations of the methoxy substituents are not affected by each other.

Effect of the $\mathrm{C}-\mathrm{O}\left(\mathrm{CH}_{3}\right)$ versus $\mathrm{C}-\mathrm{O}(\mathrm{H})$ bond on ring protons: We have previously proposed refined Lemieux-Stevens increments for aldohexopyranoses ${ }^{21}$ (taking β-D-glucopyranose as the reference) and for aldopentopyranoses ${ }^{22}$ (taking β-D-xylopyranose as the reference). It was interesting to look for possible differences when a $\mathrm{C}-\mathrm{O}(\mathrm{H})$ bond is changed into a $\mathrm{C}-\mathrm{O}\left(\mathrm{CH}_{3}\right)$ bond, e.g. looking for any change in the proposed values that would result from contributions others* than arising from the additional $\mathrm{O}-\mathrm{CH}_{3}$ bond anisotropy and its relative spatial disposition. Table VI (values deduced after correction for the rotameric contribution) shows that the effects are similar for $\mathrm{C}-\mathrm{O}\left(\mathrm{CH}_{3}\right)$ and $\mathrm{C}-\mathrm{O}(\mathrm{H})$ bonds, e.g. $+0.22 \pm 0.07$ ppm for an app

[^3]Table VI
(Continued)

Correction	Positioning for corr.	Correction value	Exp. value	Increment
OCH_{3}	$\mathrm{H}(a a) \mathrm{CH}_{3}$	$-0.02 /-0.05$	+0.29	$+0.24 /+0.27$
OCH_{3}	-	-	+0.24	+0.24
OCH_{3}	$\mathrm{H}(a a) \mathrm{CH}_{3}$	$-0.02 /-0.05$	+0.28	$+0.23 /+0.26$
OCH_{3}	secondary effects	-0.06	+0.29	+0.23

Table VII
δ-Effects
Compound \quad Proton δ-Effect Value

Methyl α-D-glucopyranoside	$\mathrm{H}-3$	$\mathrm{H}\left(g^{+} g^{-} a\right) \mathrm{CH}_{3}$	-0.03
	$\mathrm{H}-5$	$\mathrm{H}\left(g^{-} g^{+} g^{+}\right) \mathrm{CH}_{3}$	-0.02
2-O-Methyl- $\alpha-\mathrm{D}-\mathrm{glucopyranose}$	$\mathrm{H}-4$	$\mathrm{H}\left(g^{-} g^{+} a\right) \mathrm{CH}_{3}$	-0.07
4-O-Methyl- α-L-arabinopyranose	$\mathrm{H}-2$	$\mathrm{H}\left(g^{-} g^{+} a\right) \mathrm{CH}_{3}$	-0.06
4-O-Methyl- β-L-arabinopyranose	$\mathrm{H}-2$	$\mathrm{H}\left(g^{-} g^{+} a\right) \mathrm{CH}_{3}$	-0.06
3-O-Methyl- $\beta-\mathrm{D}-\mathrm{gulopyranose}$	$\mathrm{H}-1$	$\mathrm{H}\left(g^{-} g^{+} a\right) \mathrm{CH}_{3}$	-0.07
	$\mathrm{H}-5$	$\mathrm{H}\left(g^{+} g^{-} g^{-}\right) \mathrm{CH}_{3}$	-0.08

$\mathrm{C}-\mathrm{O}\left(\mathrm{CH}_{3}\right)$ in aldohexopyranoses and $+0.23 \pm 0.03 \mathrm{ppm}$ for a synaxial $\mathrm{C}-\mathrm{O}\left(\mathrm{CH}_{3}\right)$ group. The increment of $4-\mathrm{OCH}_{3}$ in 4-O-methyl- α, β-L-arabinopyranoses on $\mathrm{H}-5 \mathrm{ax}$ is +0.21 ppm when compared to α, β-D-xylopyranoses. Hence, this value may be considered as arisen from a rotameric contribution $(-0 \cdot 10 /-0.14 \mathrm{ppm})$ and one coming from the $\mathrm{C}(4)-\mathrm{O}(4)$ bond, with a resultant value of $+0.21-(-0 \cdot 10 /-0.14)=$ $=+0.31 /+0.35 \mathrm{ppm}$. This is exactly the value observed in α-L-arabinopyranose versus the same reference compound β-D-xylopyranose. Therefore, the app effect of either an $\mathrm{C}-\mathrm{O}(\mathrm{H})$ or $\mathrm{C}-\mathrm{O}\left(\mathrm{CH}_{3}\right)$ on a proton which belongs to a methylene grouping (H-5 in aldopentopyranoses) is Jarger than when it belongs to a methine grouping. It is known that increments indeed are "substrate sensitive", and the same effect as
the present one has been observed in other hexacyclic compounds ${ }^{15}$. We find further that in methyl α-D-glucopyranoside the synaxial increment on $\mathrm{H}-5$ amounts only to +0.25 ppm (ref. ${ }^{23-25}$), whereas a value of +0.40 ppm is normally found ${ }^{21.22}$ for a syn-axial OH.
δ-Effects: In the previous examples, the rotameric distribution of an axial methoxy group seems to be well established. We have extracted therefore the δ-effects, characterised by the conformational fragments $\mathrm{H}\left(g^{-}, g^{+}, a\right) \mathrm{CH}_{3}$ and $\mathrm{H}\left(g^{+}, g^{-}, g^{-}\right) \mathrm{CH}_{3}$ (or the enantiomeric situations). There is a good indication that they cause a small upfield displacement of $-0.05 \pm 0.03 \mathrm{ppm}$ (Table VII).

REFERENCES

1. Gagnaire D., Odier L.: Carbohyd. Res. 11, 33 (1969).
2. Rathbone E. B., Stephen A. M.: Tetrahedron Lett. 1970, 1339.
3. Rathbone E. B., Stephen A. M., Pachler K. G. R.: Carbohyd. Res. 20, 141 (1971).
4. Rathbone E. B., Stephen A. M., Pachler K. G. R.: Carbohyd. Res. 20, 357 (1971).
5. Rathbone E. B., Stephen A. M., Pachler K. G. R.: Carbohyd. Res. 23, 275 (1972).
6. Grass E. G., Mastronardi I. O., Frasea A. M.: Carbohyd. Res. 16, 232 (1971).
7. Haverkamp J., Van Dongen J. P. C. M., Vliegenthart J. F. G.: Tetrahedron 29, 3431 (1973).
8. Haverkamp J., Van Dongen J. P. C. M., Vliegenthart J. F. G.: Carbohyd. Res. 33, 319 (1974).
9. Abbas S. A., Haines A. M., Wells A. G.: J. Chem. Soc., Perkin Trans. 1, 1976, 1351.
10. Danneels D., Anteunis M.: Org. Magn. Resonance 8, 539, 542 (1976).
11. Kováć P., Longauerová Ž.: Chem. Zvesti 27, 415 (1973).
12. Kováć P.: Carbohyd. Res. 20, 418 (1971).
13. Hodge J. E., Rist C. E.: J. Amer. Chem. Soc. 74, 1498 (1952).
14. Danneels D., Anteunis M.: Org. Magn. Resonance 6, 617 (1974); Cf. Anteunis M., Danneels D.: Org. Magn. Resonance 7, 345 (1975).
15. Danneels D., Anteunis M.: Tetrahedron Lett. 1975, 687.
16. Tavernier D., Anteunis M.: J. Magn. Resonance 13, 181 (1974).
17. Gorrichon A.: Thesis. Toulouse; France 1976.
18. Grover M. S., Guthrie P. J., Stothers J. B., Tan C. T.: J. Magn. Resonance 10, 227 (1973).
19. Lemieux R. U., Koto S.: Tetrahedron 30, 1933 (1974).
20. De Bruyn A., Anteunis M.: Bull. Soc. Chim. Belg. 84, 831 (1974).
21. Lemieux R. U., Stevens J. D.: Can. J. Chem. 44, 249 (1966).
22. De Bruyn A., Anteunis M., Van Beeumen J.: Bull. Soc. Chim. Belg. 86, 259 (1977).
23. De Bruyn A., Anteunis M., Verhegge G.: J. Acta Cienc. Indic. 1,83 (1975).
24. De Bruyn A., Anteunis M., Garegg R., Norberg T.: Acta Chem. Scand. B 30, 820 (1976).
25. De Bruyn A., Anteunis M., De Gussem R., Dutton G. G. S.: Carbohyd. Res. 47, 158 (1976).
26. De Bruyn A., Anteunis M., Claeyssens M., Saman E.: Bułl. Soc. Chim. Belg. 85, $605^{i}(1976)$.

[^0]: ${ }^{a}$ Positive signs for displacements to lower field. ${ }^{b}$ Values extracted from different 1,3-dioxane derivatives, including spiro-derivatives.

[^1]: () is vs β-D-glucopyranose and || is vs α-D-glucopyranose.

[^2]: ${ }^{a}$ From reference ${ }^{24}$; ${ }^{b}$ versus β-D-gulopyranose; ${ }^{c}$ Degenerated to a deceptively simple AA'X spin system.

[^3]: * Alternatively, these additional effects may arise from the $\mathrm{O}-\mathrm{CH}_{3}$ bond anisotropy on protons further remoted than for β - and γ-effects, see also δ-effects.

